107 research outputs found

    Crossflow effects on steady and fluctuating pressures on an ogive-cylinder cone-frustum model in supersonic separated flow

    Get PDF
    Wind-tunnel tests were conducted on an ogive-cylinder model with two axisymmetric protuberances having cone frustum angles of cone = 23 deg and 45 deg that were used to generate detached shock waves and the resulting separated flow areas downstream of the shock. The tests were conducted in a 9 by 7 foot supersonic wind tunnel at a free-stream Mach number of 2.0 and at Reynolds numbers of 1.5 x 1 million and 3.9 x 1 million, based on body diameter. The model had an afterbody fineness ratio of 8.3, and the ogive nose had a fineness ratio of 3.0. Two characteristics of the fluctuating pressures in surface vortex flows that result from the crossflow component, (velocity along the tunnel longitudinal axis free stream angle of attack), in combination with changes in the longitudinal pressure gradient were measured: (1) the broadband, rms-pressure coefficients and (2) the power spectral densities. Measurements are presented for various flow regions on the model such as the attached turbulent boundary layer, the detached frustum shock wave, and separated flow areas. The results indicate that the pressure fluctuations around or in the neighborhood of the foci of the vortex flows had broadband intensities and power spectral densities nearly identical to the levels previously measured in separated-flow regions at angles of attack of 0 deg

    The Effects of Blowing Over Various Trailing-edge Flaps on an NACA 0006 Airfoil Section, Comparisons with Various Types of Flaps on other Airfoil Sections, and an Analysis of Flow and Power Relationships for Blowing Systems

    Get PDF
    The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems

    Network analysis of geomagnetic substorms using the SuperMAG database of ground based magnetometer stations

    Get PDF
    The overall morphology and dynamics of magnetospheric substorms is well established in terms of the observed qualitative auroral features seen in ground-based magnetometers. This paper focuses on the quantitative characterization of substorm dynamics captured by ground-based magnetometer stations. We present the first analysis of substorms using dynamical networks obtained from the full available set of ground-based magnetometer observations in the Northern Hemisphere. The stations are connected in the network when the correlation between the vector magnetometer time series from pairs of stations within a running time window exceeds a threshold. Dimensionless parameters can then be obtained that characterize the network and by extension, the spatiotemporal dynamics of the substorm under observation. We analyze four isolated substorm test cases as well as a steady magnetic convection (SMC) event and a day in which no substorms occur. These test case substorms are found to give a consistent characteristic network response at onset in terms of their spatial correlation. Such responses are differentiable from responses to the SMC event and nonsubstorm times. We present a method to optimize network parametrization with respect to the different individual station responses, the spatial inhomogeneity of stations in the Northern Hemisphere, and the choice of correlation window sizes. Our results suggest that dynamical network analysis has potential to quantitatively categorize substorms.Dimensionless parameters can then be obtained that characterise the network and by extension, the spatio-temporal dynamics of the substorm un der observation. We analyse four isolated substorm test cases as well as a steady magnetic convection (SMC) event and a day in which no substorms occur. These test case substorms are found to give a consistent characteristic net work response at onset in terms of their spatial correlation. Such responses are differentiable from responses to the SMC event and non-substorm times. We present a method to optimise network parametrisation with respect to the different individual station responses, the spatial inhomogeneity of stations in the northern hemisphere and the choice of correlation window sizes. Our results suggest that dynamical network analysis has potential to quantitatively categorise substorms

    Characterising the ionospheric current pattern response to southward and northward IMF turnings with dynamical SuperMAG correlation networks

    Get PDF
    We characterize the response of the quiet time (no substorms or storms) large-scale ionospheric transient equivalent currents to north-south and south-north IMF turnings by using a dynamical network of ground-based magnetometers. Canonical correlation between all pairs of SuperMAG magnetometer stations in the Northern Hemisphere (magnetic latitude (MLAT) 50–82°) is used to establish the extent of near-simultaneous magnetic response between regions of magnetic local time-MLAT. Parameters and maps that describe spatial-temporal correlation are used to characterize the system and its response to the turnings aggregated over several hundred events. We find that regions that experience large increases in correlation post turning coincide with typical locations of a two-cell convection system and are influenced by the interplanetary magnetic field By. The time between the turnings reaching the magnetopause and a network response is found to be ∼8–10 min and correlation in the dayside occurs 2–8 min before that in the nightside

    Fast Hash-Based Signatures on Constrained Devices

    Full text link

    De novo design of protein logic gates

    Get PDF
    The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions

    The Symbiosis between Collision and Preimage Resistance

    Full text link
    We revisit the definitions of preimage resistance, focussing on the question of finding a definition that is simple enough to prove security against, yet flexible enough to be of use for most applications. We give an in-depth analysis of existing preimage resistance notions, introduce several new notions, and establish relations and separations between the known and new preimage notions. This establishes a clear separation between domain-oriented and range-oriented preimage resistance notions. For the former an element is chosen from the domain and hashed to form the target digest; for the latter the target digest is chosen directly from the range. In particular, we show that Rogaway and Shrimpton’s notion of everywhere preimage resistance on its own is less powerful than previously thought. However, we prove that in conjunction with collision resistance, everywhere preimage resistance implies ‘ordinary’ (domain-based) preimage resistance. We show the implications of our result for iterated hash functions and hash chains, where the latter is related to the Winternitz one-time signature scheme.status: publishe
    • …
    corecore